
QRStream: A Secure and Convenient Method for
Text Healthcare Data Transferring

Huajian Mao, Chenyang Chi, Jinghui Yu, Peixiang Yang, Cheng Qian and Dongsheng Zhao

Abstract— With the increasing of health awareness, the
users become more and more interested in their daily health
information and healthcare activities results from healthcare
organizations. They always try to collect them together for
better usage. Traditionally, the healthcare data is always deliv-
ered by paper format from the healthcare organizations, and
it is not easy and convenient for data usage and management.
They would have to translate these data on paper to digital
version which would probably introduce mistakes into the data.
It would be necessary if there is a secure and convenient method
for electronic health data transferring between the users and
the healthcare organizations. However, for the security and
privacy problems, almost no healthcare organization provides
a stable and full service for health data delivery. In this paper,
we propose a secure and convenient method, QRStream, which
splits original health data and loads them onto QR code frame
streaming for the data transferring. The results shows that
QRStream can transfer text health data smoothly with an
acceptable performance, for example, transferring 10K data
in 10 seconds.

I. INTRODUCTION

As the user health awareness increases, the data man-
agement need for personal health becomes more and more
intense [1] [2]. It becomes common for the users to own
[3] [4] and record their daily health information and their
activities happened in the health organizations [5] like in the
hospitals for different purposes [6].

There are lots of Apps (e.g. Apple Health, Google Health)
to collect the daily health data, such as exercise record, heart
rate, and blood pressure. However, it is not easy to manage
the healthcare organization data. The problem mainly comes
from that most of the results are provided in paper but not
in digital. If the users want to merge all their health records
into some Apps, they have to either input the paper result
manually or take picture of the paper result and attach the
picture to the App. But these methods may introduce result
mistakes or lead to the hardness of the further text health data
usage. It would be much better if the healthcare organizations
could provide the health record in digital.

Theoretically, the healthcare organizations can authorize
the disclosure of the user’s health data on the Internet as
a service, so that the users can access their health record
through the network. However, it would probably bring the
risk of data servers being hacked or causing leakage of
the private data such as user health, or bringing potential
legal issues. Therefore, for the secure and privacy reasons

The authors are with faculties of Academy of Military Medi-
cal Sciences, Beijing, China. Corresponding author: Dongsheng Zhao.
Emails: {hjmao, chicy, weijh, yangpx, qiancheng,
dszhao}@bmi.ac.cn

[7], only limit data access methods [8] are provided, and
no organization is will to provide the full user health
data in the form of centralized services. In addition, the
healthcare organizations can technically deliver the users data
through connected methods like flash disk, CD, etc, however,
this method is usually inefficient and the user operation
is extremely cumbersome. At the same time, it makes the
organizations in a high risk state of the device being infected
with the virus. Therefore, almost no healthcare organization,
at least in China, would like to provide users an electronic
health record delivery method.

For these reasons, it is urgent and necessary to provide
a secure and convenient method for health data transferring
between the users and healthcare organizations. In this paper,
we focus on the text health data and propose QRStream,
a secure and convenient method for text healthcare data
transferring. QRStream splits the original data into small
slices and encodes them into QR code figures and then plays
them on the screen, while in the client side, the client can
use camera to record and extract the QR code figures and
then merges the extracted data into the original data to finish
the data transferring from the server side to the client side.

II. METHODS

We propose QRStream to using QR code streaming to
transfer text healthcare data from one device to another.
Figure 1 is an overview of QRStream. As the figure shows,
QRStream contains two main part, server side Data Encoder
and client side Stream Decoder. The Data Encoder is always
resident in the server side, for example on the record printing
terminal in the hospitals or other servers. Its main duty is to
transform the original text healthcare data to the QR code
streaming and then play them on the terminal screen for the
users who want to take out their own healthcare record in
digital. While the Stream Decoder is always a component of
the client side App. It is used to capture and decode the QR
code streaming and then decode the information and merge
them into the original data so as to finish the data transferring
from the server side to the user device side.

A. Data Encoder

Data Encoder splits the original data to be equally split
into slices and prepends extra header information, including
slice number, tag information and so on, to each slice. And
after the data spliced, Data Encoder will encode them into
QR code frames and play the stream on some terminal screen
for the client Apps to scan them. Besides, the Data Encoder
should tell the client side App several important parameters,

Fig. 1. Workflow overview of QRStream

Fig. 2. QRStream protocol package format

including the md5sum of the data for content verifying, a
tag of the transferring task for identification, the count of
the data slices and so on. Only with these parameters, the
client side App can decode the transferring data correctly.
For this purpose, a QR code frame of the metadata will be
also generated for the parameters negotiation.

Figure 2 shows the payload and metadata QR code frames
package format of the QRStream transferring protocol.

In the metadata frame, QRStream contains the parameters
including tag, seqlen, count, size, md5sum, type,
and name. In these parameters, the tag is used to uniquely
identify the transferring task, and the seqlen is the length
of slice number in the payload frame package, and the
count tells the count of the slices of the whole data, and
the size is the length of the transferred data, and the
md5sum is the md5sum value of the transferred data, and
the type is the content type which is FILE (which means
the content to be transferred is a file) or TEXT (which
means the content to be transferred is some text content),
and name is the file name of the transferred data if the
type is FILE or blank if the type is TEXT. As some
of the parameters are variable in length, we separate each
parameter with the character ’|’, and compose the form
’tag|seqlen|count|size|md5sum|type|size’
in text content.

The payload frame includes three information which are
the tag value, the seq number and the raw slice data. The
tag value is used to check if it is one of the transferred slices

by comparing it to the tag value in the metadata frame.
Only if the tag value is valid, the QRStream will add the
raw slice data into the receiving buffer array according to
the seq number for the stream decoding steps.

B. Stream Decoder

In order to capture the data from the server side Data En-
coder, the Stream Decoder component should be integrated
into the client side App.

In the common usage steps, the Stream Decoder will first
capture the QR code of the metadata frame, and decode the
parameters from the metadata QR code. Then the decoder
should be used to capture the played payload data QR
code stream, and decode them with the metadata tag and
seqlen values. Ideally, all the payload frames should be
captured by the decoder component. However, because of
the external environment like the shake of the camera-
holding hands or the environment light, some payload frames
might be missing in the streaming capturing step. In this
situation, the user can tell the Data Encoder the missing
frame sequence number, and the QRStream will display the
missing frame statically (not in the QR code stream), and
waits the decoder to capture the missing frame.

After all the data frames are captured, which means all
the slices are received, the data will be merged together
according to the sequence number to form the original raw
data. And the Stream Decoder will calculate the md5sum
value with the merged raw data, then compares it with the
md5sum value in the metadata frame. If the two values
are equal, then the data is transferred successfully, and the
client side App can use the merged data to save to a file or
to display the content. Or if the two values are not equal,
which means some slices are decoded incorrectly, the user
should restart all the steps from capturing the metadata.
However, benefit from the QR code correction mechanism
[9], almost all the data transferring tasks using QRStream
are successfully finished.

C. IMPLEMENTATION

To prove the availability of QRStream, we have imple-
mented a prototype library of QRStream and also provided
a demo online basing on the library.

1) QRStream Libraries: We have implemented two pro-
totype libraries in Javascript for Data Encoder and Stream
Decoder. The encoder library provides users an API to
initialize QRStream with parameters, and then the users can
load the content to QRStream object and let it encode the
content to the QR code stream. While in the decoder library,
it uses the captured QR code frames as input, and decode
them to slices of data, and then merge the data according to
the sequence number.

2) Parameters: Except the parameters introduced in Sec-
tion II-A, QRStream uses three other important parameters
in the implementation phase which are qr code size, qr code
capacity and time interval of frames. All of these parameters
will have an effect on the capture speed: if the width is too
small, or the qr code capacity is too high, or time interval is
too low, all of these situations may cause a low recognition
speed. However, if too low qr code capacity or too high time
interval, the content to be transferred in a given time will
be reduces, which may also cause a low speed. For these
reasons, the developer may have to tune these parameters
according to their situations. In our usage, we commonly set
the width to 500 px, qr code capacity to 500 bits, and time
interval to 0.5 seconds.

3) Project on Github: We have made the QRStream as an
open source project, and the code can be found on Github
at https://github.com/qrstream.

III. RESULTS
This section evaluates QRStream with several experi-

ments. We evaluate them with the client on an iPhone
XR, and the server side is hosted on an Intel R© NUC Kit
NUC6i7KYK who has 16G memory and a 6th generation
Intel R© Core i7-6770HQ processor. We synthesize the work-
load by randomly generating text content with sizes from
1K, 2K, 4K, 8K, 16K and 32K which are common in
practical usage.

For our evaluation, the most intuitive metric is the data
transferring time consumption of the tasks, however, as there
are manual operations in the data transferring steps, the time
consumption is affected by the manual operation speed. For
this reason, in order to make the evaluation more objective,
we use the successfully recognized ratio of the QR stream
in one loop as the performance metric. With this ratio, we
can calculate the overall time consumption if the manual
operation speed is given.

We evaluate QRStream as follows. First, we briefly eval-
uate the QRStream performance with different file sizes,
and then select a typical file size to go on evaluation with
different QR code frame intervals. Next, we evaluate the
performance with different QR code capacity settings to find
the effect of capacity on performance. Finally, we will select
a set of potential best parameters to evaluate QRStream with
different file sizes to find how good could QRStream be on
text healthcare data transferring.

A. Frame intervals
In this section, we evaluate the effect of file sizes and

QR code frame intervals with the synthesized workloads.

Fig. 3. Success ratio with different frame intervals (ms).

First, we briefly evaluate the performance of QRStream for
different file sizes. We find that when the file size is small
the success ratio is not very stable, but when the file is large,
the success ratio is almost stable at some value. The reason
is that when file is small, it is split into a small number of
QR code frames, so even only one extraction failure will
lower down the success ratio a lot. So the success ratio is
not stable when file is small and becomes more and more
stable when the files become larger. From the experiments
results, we believe that there is no strong relativity between
the success ratio of QRStream and the files being transferred.
For this reason, to simplify the evaluation, we select a typical
file size 8K (and the capacity is set to 500 bytes) to evaluate
QRStream with different frame intervals (125ms / 250ms /
500 ms / 1 sec / 2 sec). Each test has been done 4 times.

Figure 3 shows the experiment results, where we can find
that the success ratio becomes large according to the frame
interval when the frame interval is less than 500ms, and
become stable when the interval is larger than this threshold.
This is because of that, when the interval is smaller than the
the QR code extraction time, it will fail frequently. And when
the interval becomes larger, QRStream will have enough time
to extract information from the captured QR code frame, and
the success ratio will be relatively high. So, to use QRStream
efficiently, we should set the frame interval to a value which
is a little larger (but not much larger) than the QR code
extraction time (which is related to the performance of the
mobile device). In our experiment settings, the threshold
value is 500ms.

B. QR code capacity

In this section we mainly focus on evaluating the relation-
ship between the success ratio and the QR code capacity.
We use different QR code capacities (including 256 / 512 /
1024 / 1536 bytes) to transfer a random generated 10K file,
and evaluate the success ratios of the QR code extraction by
QRStream to find the relationship.

Figure 4 shows the experiment results, where we can find
that the extraction success ratio is high when the capacity

Fig. 4. Success ratio with different QR code capacities (bytes).

value is small, and becomes lower and lower when the
capacity value is larger than 512 bytes. This is mainly
because of that when the capacity is low, the QR code is easy
for mobile devices to extract them out. When the capacity
becomes large, the QR code frame become complex to be
quickly extracted out. Actually, the QR code capacity affects
the transferring performance in two aspects which are the
number of QR code frames and the QR code extracting
time. The overall time consumption can be approximately
calculated by the following formula:

(
Sizecontent
Capacity

+1)×Interval+Countfailed×Timemanual

, where Sizecontent is the content size to be transferred,
Capacity is the QR code capacity, Interval is the QR code
frame interval in the stream, Countfailed is the failed ones
which are not been recognized in the first capturing loop,
and Timemanual is the operation time to put the missing
frame ID which actually is an objective parameter related
to the person who use it. In our experiments, we always
do it in about 1.5 seconds to input the missing ones, so the
Timemanual = 1.5. The overall time consumption curve can
also be found in figure 4. From the curve, we can find that,
if the capacity is set to a small value, then there will be
more QR code frames to transfer but easier to be extracted
for each frame, otherwise if the capacity is set to a large
value, then there will be less QR code frames but harder to
be recognized. So the user of QRStream system should select
a balance value for the QR code capacity for a better overall
performance. In our settings, we can find that the 512 bytes
is the best option for the QR code capacity parameter, and
the overall latency is about 10.5 seconds.

C. Overall performance

With the experiments in the previsous subsections, we
found that setting file size to 8K bytes, frame interval to 500
ms, and QR code capacity to 512 bytes would be a good
choice for QRStream in our experiment environment. Thus
we set the parameters to these values, and take experiments
on the overall performance of QRStream. We did 4 times

on transferring a 8K bytes file through QRStream, and the
result shows that we can transfer a 8K bytes size file in
about 9.2 seconds in average. With this performance, our
proposed method can keep the health data delivery latency
at a small value which is at least as low as, and commonly
much lower than, the traditional paper based report delivery
method where data is always transferred in tens of seconds.

IV. DISCUSSION

In order to explain the QRStream system more detail, in
this chapter, we will first show two important potential sce-
narios, followed by analyzing the advantages and limitations
of QRStream.

A. Potential Scenario

QRStream is designed to be used in transferring health
data for healthcare organizations and users. It can be used
in many different scenarios. Clinical Data Delivering in
Hospital is one of these scenarios. Traditionally, after a
patient goes to hospital for a clinic activity, he or she will
get their clinic result report printed on paper. But it is
not good for delivering, sharing, and management. While
with QRStream, we can make it much more convenient.
In order to add the QRStream function to the traditional
systems, the hospital only needs to add a new QRStream
button in the traditional result print page and a new pop up
page. When the patient click the button a new QRStream
page will pop up. The page contains a metadata QR code
which is composed by the metadata (like size, md5sum,
and so on) of the data being transferred, and a stream of
QR code frames which are encoded from data slices, and
a component for showing the QR code of the missing data
slices. And in the user device side, the patient will first
capture the metadata frame to extract the meta information
of the data being transferred, after that the QRStream
client will guide the user to go on capturing the QR code
stream. For the impact of the environment, for example
dim light, the client might not be able to capture all the
stream frames, and some frames of the QR code stream may
missing, then the users can input the missing IDs, which
are showed in the client App, into the missing frame ID on
the terminal of the hospital, and capture the showed QR
code on the terminal. With this workflow, the user clinical
data will conveniently pop up to the user device from the
terminal of the hospital. All the functions of metadata and
stream QR code frames generating are implemented in
the QRStream library which is available on the GitHub
repository. The repository also contains a demo system for
the hospital scenario. You may refer to the demo page at
https://qrstream.github.io/demos/his.html.
With QRStream, we can meet the requirements of most
scenarios where we need to transfer text health data.

B. Advantages

As we described, QRStream uses QR code streaming as
the transferring media and uses camera at client side to

capture data without any physical connection. In this way,
the QRStream system has the following advantages.

Same security level as traditional method. In traditional
paper printing based record delivery method, the HIS system
always uses three steps to send the record to the users which
are collecting information by the system, rendering content
in some form like table, and then printing on paper for the
users to take out. Similarly, QRStream shares the same steps
and same connection requirement as the traditional method.
So the HIS systems are at a same security level which is
secure and no potential data leaking or viral infection risks
exist.

Easy to be integrated into healthcare systems. To
integrate QRStream with existing healthcare related system,
the developers only need to load our QRStream library to
the project, and feed data to an provided API and display
generated QR code frames in their own way. While in
the client side the developers can capture the QR code
streaming frames with their favorite tools, and feed the
captured frames to our client side API, and the original data
will be reproduced. Besides, the example code and demo
page code both for client and server side are open source
project, and the developers can implement their own system
basing on our demo code.

Convenient for text health data. Traditionally, to deliver
the digital version of the health data to the users, the
operators from the healthcare organizations may copy user’s
record to a flash driver or burn the data to a CD / DVD,
which may take a long time to be finished or even cost the
users more money. Comparing to these methods, QRStream
performs much more convenient and faster. For healthcare
records, most of them can be transferred in a small latency,
for example, less than 10 seconds per record. And only a
device with a camera, like mobile phone, is needed to transfer
the data. Users can conveniently click a button on the server
side and capture the data through the client and take their
own data out.

C. Limitations

QRStream is convenient for text health data transmission,
however, it has several limitations.

Data size. The amount of data that can be stored in
the QR code symbol depends on the datatype, version, and
error correction level [9]. For example, the maximum storage
capacity for binary data with version 40 and error correction
level L (low) is 2,953 bytes. And in practice, one QR code
frame may contain only 1,000 bytes or even less for better
extraction performance. In this way, to transfer large data
with QRStream would need to play a large number of QR
code frames, for example, 1000 frames for 1 Megabyte data.
If we set the play speed to 2 frames per second, it would
take 500 seconds to finish the data transmission. It is not an
acceptable latency. For this reason, QRStream is aimed at
transferring the small text health data.

Data type. Text data is one of the most common health
data types, however, health data might be some other binary
types like image, video or audio data. And those binary data

types are always come with large data size. But as we stated
that QRStream is limited for small size data, it is not suitable
to transfer those large data in those binary types.

However, in practice, most of the generated data (not in
size) are text health data, like clinic data, examination data
or the test data and so on. Although QRStream is limited
to be used in transferring small text health data, it still can
meet most of the healthcare data collection and transmission
requirements.

V. CONCLUSIONS

In this paper, we propose QRStream, a secure and con-
venient method for transferring text healthcare data from
the organizations, like hospitals, to the patient users when
a new record is generated. For the organizations, it provides
a method to deliver the health data without any physical
connection to the users, which makes sure that the machines
will not be infected or hacked and no data leak will happen
because of the user data sharing. For users, it makes sure
that the users can conveniently obtain their own health data
from the organizations in time for their further utilization.
The evaluation shows that QRStream can transfer text health
data smoothly with an acceptable and useable performance,
for example, transferring 10K data in 10 seconds.

QRStream is an open source project available at
https://github.com/qrstream, and the homepage
is https://qrstream.github.io.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their comments and kindly suggestions.

REFERENCES

[1] C. Safran, M. Bloomrosen, W. E. Hammond, S. Labkoff, S. Markel-
Fox, P. C. Tang, and D. E. Detmer, “Toward a national framework
for the secondary use of health data: an american medical informatics
association white paper,” Journal of the American Medical Informatics
Association, vol. 14, no. 1, pp. 1–9, 2007.

[2] G. Eysenbach, “Medicine 2.0: social networking, collaboration, par-
ticipation, apomediation, and openness,” Journal of medical Internet
research, vol. 10, no. 3, 2008.

[3] P. Kostkova, H. Brewer, S. de Lusignan, E. Fottrell, B. Goldacre,
G. Hart, P. Koczan, P. Knight, C. Marsolier, R. A. McKendry, et al.,
“Who owns the data? open data for healthcare,” Frontiers in public
health, vol. 4, p. 7, 2016.

[4] C. J. Haug, “From patient to patient—sharing the data from clinical
trials,” New England Journal of Medicine, vol. 374, no. 25, pp. 2409–
2411, 2016.

[5] N. Genes, S. Violante, C. Cetrangol, L. Rogers, E. E. Schadt, and Y.-
F. Y. Chan, “From smartphone to ehr: a case report on integrating
patient-generated health data,” npj Digital Medicine, vol. 1, no. 1, p. 23,
2018.

[6] A. J. Greenberg, D. Haney, K. D. Blake, R. P. Moser, and B. W.
Hesse, “Differences in access to and use of electronic personal health
information between rural and urban residents in the united states,” The
Journal of Rural Health, vol. 34, pp. s30–s38, 2018.

[7] M. Meingast, T. Roosta, and S. Sastry, “Security and privacy issues with
health care information technology,” in Engineering in Medicine and
Biology Society, 2006. EMBS’06. 28th Annual International Conference
of the IEEE. IEEE, 2006, pp. 5453–5458.

[8] J. J. Cimino, V. L. Patel, and A. W. Kushniruk, “The patient clinical
information system (patcis): technical solutions for and experience with
giving patients access to their electronic medical records,” International
journal of medical informatics, vol. 68, no. 1-3, pp. 113–127, 2002.

[9] T. J. Soon, “Qr code,” Synthesis Journal, vol. 2008, pp. 59–78, 2008.

